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Abstract

Rationale and Objectives—To evaluate a natural language processing (NLP) system built with 

open-source tools for identification of lumbar spine imaging findings related to low back pain on 

magnetic resonance (MR) and x-ray radiology reports from four health systems.

Materials and Methods—We used a limited data set (de-identified except for dates) sampled 

from lumbar spine imaging reports of a prospectively-assembled cohort of adults. From 

N=178,333 reports, we randomly selected N=871 to form a reference-standard dataset, consisting 

of N=413 x-ray and N=458 MR reports. Using standardized criteria, 4 spine experts annotated the 

presence of 26 findings, where 71 reports were annotated by all 4 experts and 800 were each 

annotated by 2 experts. We calculated inter-rater agreement and finding prevalence from annotated 

data. We randomly split the annotated data into development (80%) and testing (20%) sets. We 

developed an NLP system from both rule-based and machine-learned models. We validated the 

system using accuracy metrics such as sensitivity, specificity, and Area Under the ROC Curve 

(AUC).

Results—The multi-rater annotated dataset achieved inter-rater agreement of Cohen’s kappa > 

0.60 (substantial agreement) for 25/26 findings, with finding prevalence ranging from 3%-89%. In 

the testing sample, rule-based and machine-learned predictions both had comparable average 

specificity (0.97 and 0.95, respectively). The machine-learned approach had a higher average 

sensitivity (0.94, compared to 0.83 for rules-based), and a higher overall AUC (0.98, compared to 

0.90 for rules-based).

Conclusion—Our NLP system performed well in identifying the 26 lumbar spine findings, as 

benchmarked by reference-standard annotation by medical experts. Machine-learned models 

provided substantial gains in model sensitivity with slight loss of specificity, and overall higher 

AUC.
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INTRODUCTION

Low back pain (LBP) has an estimated global lifetime prevalence of almost 40% (1). In the 

United States, LBP is the second most common symptom prompting physician visits (after 

respiratory infections), with an estimated annual cost of over $100 billion (2; 3). Despite 

numerous available interventions for this common and burdensome condition, LBP remains 

difficult to diagnose and treat effectively (4). One difficulty in addressing LBP is substantial 
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heterogeneity in its etiology, progression, and response to treatment. For instance, a clinical 

presentation of LBP could be caused by reasons ranging from minor muscle strains to 

malignant tumor (5; 6).

The discovery of patient subgroups with similar prognoses and intervention 

recommendations is a research priority for advancing LBP care (7; 8). Spine imaging 

findings may help define such subgroups. In most cases, imaging findings alone are 

insufficient to diagnose the underlying reasons for LBP. Furthermore, even when present, 

imaging findings are often of uncertain clinical significance given their frequent presence in 

asymptomatic individuals (9). Yet, certain imaging findings, such as endplate changes, are 

more prevalent in LBP patients compared to non-clinical populations (10). To understand 

relationships between imaging findings and LBP, an important step is the accurate extraction 

of findings, such as stenosis and disc herniation, from large patient cohorts.

Radiologists identify lumbar spine imaging findings on images and create reports containing 

these findings. While information extraction from these reports can be done manually, this 

technique is impractical for large sample sizes. As an alternative to manual extraction, 

natural language processing (NLP) has been successfully used to harvest specific findings 

and conditions from unstructured radiology reports with high accuracy. For example, a 

model to identify pulmonary nodules from computed tomography reports attained a positive 

predictive value (PPV) of 0.87 (11). Another group achieved an average specificity of 0.99 

applying complex automated queries to identify 24 conditions from chest x-ray reports, 

including neoplasms, pneumonia, and tuberculosis (12). Such methods have not been 

previously applied to lumbar spine degenerative findings commonly found in LBP patients. 

Automated identification of these findings is an important step in building clinical 

information systems that can support large-scale learning approaches to improve both 

clinical care and clinical research.

In this manuscript, we describe the development and evaluation of an NLP system for 

identification of 26 lumbar spine imaging findings related to LBP on magnetic resonance 

(MR) and x-ray radiology reports. Our set of 26 imaging findings includes 8 findings 

commonly found in subjects without LBP, as well as additional findings that are less 

common but are potentially clinically important (9).

MATERIALS AND METHODS

Reference-Standard Dataset

We used a limited data set (de-identified except for dates of service) and our study protocol 

was deemed minimal risk with waivers for both consent and Health Insurance Portability 

and Accountability Act (HIPAA) authorization by site Institutional Review Boards (IRBs). 

This was a retrospective study of lumbar spine imaging reports sampled from a 

prospectively-assembled cohort of adults studying the effect of report content on subsequent 

treatment decisions (13). The cohort consisted of patients enrolled between October 2013 

and September 2016 from four integrated health systems (Kaiser Permanente of Washington, 

Kaiser Permanente of Northern California, Henry Ford Health System, Mayo Clinic Health 

System). We assembled a reference-standard dataset from the N=178,333 index reports 
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available on April 2016, randomly sampled stratified by site and imaging modality to obtain 

an approximately balanced sample of N=413 x-ray and N=458 MR reports (Table 1). 

Sample sizes were based on recommendations for NLP classification tasks (14) and also 

additionally justified by post-hoc power calculations.

Our team had two neuroradiologists, a physiatrist, and a physical therapist, all with clinical 

expertise in spine disorders (JGJ, HTH, PS, SDR). This group jointly identified 26 imaging 

findings that are potentially related to LBP, including 8 commonly found on radiology 

reports, and 6 considered clinically important (Table 2). We based the findings identified in 

this study on prior research, and these findings represent a wide range of radiological 

findings related to LBP (2; 15; 16). For each finding, the experts listed associated keywords, 

which are synonyms of the finding, and supplemented them with online searches of medical 

databases (17; 18). The keyword list was expanded iteratively, where additional keywords 

were identified through the annotation process.

Our clinicians annotated each report for the presence or absence of each finding using a 

secure online interface developed with Research Electronic Data Capture (REDCap) 

(Appendix Figure A.1) (19). Interpretations of findings were guided by how reports are 

likely understood by receiving physicians (20). To achieve consistency in interpretation, all 4 

experts annotated 71 reports for the 26 findings. Then, the group reviewed annotations and 

discussed discrepancies until consensus was reached. We arrived at our initial 71 reports 

through an iterative training process, selecting reports based on report length, where 

sufficient consensus among readers was achieved after having reviewed 71 reports. The 

remaining 800 reports were each annotated by 2 separate experts. We created all possible 

pairs from 4 experts for a total of 6 expert pairs; each rater pair annotated about 133 reports. 

Expert pairs discussed and corrected any discrepancies in their annotations. As needed, the 

senior neuroradiologist (JGJ) provided final adjudications. As a post-annotation check, all 

report ratings were updated to reflect changes in the keyword list. The reference-standard 

dataset contains annotations of all 26 findings based on relevant keywords. For the doubly-

annotated 800 reports, we measured interrater agreement in the reference-standard dataset 

using Cohen’s kappa (21).

NLP System

We implemented our NLP system with feature extraction, model development, and model 

validation steps (Figure 1). Our NLP system included routines for pre-processing steps such 

as section segmentation, sentence segmentation, and text normalization. The section 

segmentation code separated each report into history, body, and impression sections, but we 

excluded the history sections from analyses as we were primarily concerned with findings. 

The sentence segmentation routine split text into individual sentences based on sentence 

boundaries. The text normalization routine mapped spelling errors and variations into the 

same word stem, and reduced variation in modeling. To make formatting more consistent 

across radiology reports received from four separate health systems, two authors with 

expertise in text processing (WKT, ENM) conducted programmatic checks and data 

cleaning. We developed separate rule-based and machine-learned models for each of the 26 

findings.
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We implemented the rule-based model (Appendix Figure A.2) in Java (v4.6.0), using 

Apache Lucene (v6.1.0), Porter Stemmer and NegEx (22; 23; 24; 25). For every sentence of 

each report, we searched for keywords using regular expressions, which are sequences of 

characters and symbols (26), to identify relevant terms (called Regex). Then, we used a 

publicly-available algorithm (24) to infer whether keywords were negated (called NegEx). 

We included a rule favoring the impression section information over any conflicting 

information in the body section (27). We produced dichotomous predictions for each report, 

where a positive assignment was made if there was at least one sentence with a keyword that 

was not modified by a negation term.

We implemented the machine-learned model in R (v3.3.0) (28), using the caret (v6.0–73) 

package (29). Predictors used included sequences of N words (called N-grams), section tags, 

Regex and NegEx from the rule-based model, imaging modality, and health system site 
(Figure 2). Therefore, the machine-learned model used both input features based on the 

output of the rule-based model (Regex and NegEx), plus additional predictors. N-grams are 

considered baseline features in NLP applications; we additionally modeled whether the N-
grams were in the body or impression section of reports. We included the categorical 

variables modality and site to account for any potential heterogeneity in language between 

x-ray and MR reports, as well as heterogeneity among different health systems. We excluded 

extremely rare (<0.05%) or common (>95%) N-grams and used logistic regression with 

elastic-net regularization as the modeling approach (30). Elastic-net is a variable selection 

procedure that penalizes both the absolute value and the squared magnitude of model 

coefficients, allowing simultaneous selection of correlated predictors. We randomly split the 

dataset into 80% development (training and validation) and 20% for testing to evaluate 

model diagnostic accuracy. We fine-tuned model hyperparameters on the development 

subsample, with 10-fold cross-validation using a Receiver Operating Characteristic (ROC) 

loss function. We produced predicted probabilities, and applied 10-fold cross-validated 

thresholds to obtain dichotomous predictions.

Statistical Analyses

We conducted statistical analyses in R (v3.3.0). We measured the prevalence of each finding, 

as well as inter-rater agreements using Cohen’s Kappa (31), on the annotated dataset. We 

compared NLP model predictions to reference-standard annotations in the test set. 

Evaluation measures were sensitivity, specificity, F1-score and Area Under the ROC Curve 

(AUC) (32). The F1-score is the harmonic mean (the reciprocal of the arithmetic mean of the 

reciprocals) of sensitivity and Positive Predictive Value (PPV), providing a single 

performance measure among reports with positive findings. For the rule-based models that 

outputted binary predictions, we used the trapezoidal rule approximation to the AUC (33). 

For the measures sensitivity, specificity, and AUC, we calculated point estimates for each 

finding as well as averaged over all findings, over the 8 common findings, and over the 6 

clinically important findings. We estimated 95% confidence intervals using bootstrap 

percentiles on the test set based on 500 iterations. We sought to determine whether a rule-

based or a machine-learned model was more accurate in classifying findings. Analyses 

focused on sensitivity and specificity. For each measure and for each finding, we compared 
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the rule-based and machine-learned models using McNemar’s test of marginal homogeneity, 

not accounting for multiple comparisons (34).

Among the machine-learned models, we also characterized model performance by 

evaluating both data availability (amount of data available to learn from) and linguistic 

complexity (difficulty posed by the learning problem). Analyses focused on the F1-score. 

Because the same development set was used for all findings, we used finding prevalence as a 

proxy for data availability. Since disagreements among experts were likely due to difficulty 

in identifying a finding from text, we used inter-rater agreement as a proxy for linguistic 

complexity. Due to the small number of findings (Nfindings = 26), we did not provide 

inferential statistics; instead, we illustrated relationships with scatterplots and non-

parametric Local Regression (LOESS) smoothed fits.

Our study was Health Insurance Portability and Accountability Act (HIPAA) compliant and 

approved by the Group Health Cooperative Institutional Review Board Protocol # 476829 

for the LIRE pragmatic trial.

RESULTS

Appendices (Appendix A and Appendix B) are available online as supplementary material.

Reference-Standard Dataset Characteristics

In the entire annotated dataset (N=871), finding prevalence ranged from 3% (listhesis grade 

2) to 89% (any degeneration). In the test set, finding prevalence ranged from 1% (listhesis 

grade 2) to 92% (any degeneration). Among the 800 reports, 25/26 findings achieved a 

minimum Cohen’s kappa > 0.60, which is generally considered “substantial” agreement 

(31); we observed variation in agreement across findings as well as across rater pairs (Figure 

3). We observed lower agreement for disc herniation (kappa=0.49) and endplate edema 

(kappa=0.72). Simple errors and report ambiguity accounted for most disagreements (Table 

3).

NLP System Performances

For each of the 26 findings, Figure 4 illustrates patterns of model performance for 

sensitivity, specificity, and AUC; Figure 5 shows ROC curves for the 8 findings that are 

common among patients without LBP; Appendix Table B.1 summarizes the top 5 predictors 

from each machine-learned model.

Over all 26 findings in our study, the average sensitivity = 0.83 (95% C.I. 0.38,1.00), 

specificity = 0.97 (95% C.I. 0.85,1.00), and AUC = 0.90 (95% C.I. 0.68,1.00) for the rules-

based approach and average sensitivity = 0.94 (95% C.I. 0.76,1.00), specificity = 0.95 (95% 

C.I. 0.84,1.00), and AUC = 0.98 (95% C.I. 0.86,1.00) for the machine-learned approach. In 

detecting the 8 findings commonly found in subjects without LBP, for the rules-based 

approach, average sensitivity = 0.90 (95% C.I. 0.71,1.00), specificity = 0.97 (95% C.I. 

0.88,1.00), and AUC = 0.93 (95% C.I. 0.84,1.00) while for the machine-learned approach, 

average sensitivity = 0.95 (95% C.I. 0.82,1.00), specificity = 0.95 (95% C.I. 0.81,1.00), and 

AUC = 0.97 (95% C.I. 0.84,1.00). In detecting the 6 findings that are likely clinically more 
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important for LBP, the rules-based average sensitivity = 0.57 (95% C.I. 0.00,1.00), 

specificity = 0.99 (95% C.I. 0.95,1.00), and AUC = 0.78 (95% C.I. 0.50,1.00) and the 

machine-learned average sensitivity = 0.96 (95% C.I. 0.86, 1.00), specificity = 0.96 (95% 

C.I. 0.85,1.00)., and AUC = 0.99 (95% C.I. 0.96,1.00). None of the machine-learned model 

had site among the top 5 predictors, but two findings (any stenosis, foraminal stenosis) 

included modality in the list of top 5 predictors (Appendix Table B.1).

On average across all findings, the machine-learned approach provided improved sensitivity, 

comparable specificity, and an overall higher AUC. Among the rule-based models, the 

lowest sensitivities were observed for findings that consists of multiple concepts, for 

example lateral recess stenosis and nerve root compression or displacement. We provide 

more details on these points in the next subsection.

Comparison of rules-based and machine-learned models

Figure 6a shows the proportion of positive reports in the test set classified correctly by one 

model but not the other, compared to reference-standard true positives (sensitivity 

comparisons). Similarly, Figure 6b compares true negatives for each model (specificity 

comparisons); Appendix Table B.2 illustrates 2 × 2 tables for calculating the proportions; 

Appendix Table B.3 shows the resulting p-values based on McNemar’s tests.

For example, in Figure 6a, for the finding any stenosis (third row), among all of the reports 

classified as true positive, the rule-based and machine-learned models classified 19% 

differently. Of these 19%, the machine-learned model was correct for nearly all (94%) which 

is why the bar is nearly completely blue. In Figure 6b, among all the true negative reports, 

the rule-based and machine-learned models classified 11% of the reports differently, where 

the machine-learned model was correct for half. Overall, machine-learned models 

demonstrated substantial and statistically significant better sensitivity for 9/26 findings, and 

slightly worse model specificity for 7/26 findings that were statistically significant. 

Therefore, machine-learned models provided substantially higher sensitivities and slightly 

lower specificities compared to rule-based approaches.

The most substantial difference between the models though, was gains in using machine-

learned models to detect the presence of compound findings. For example, nerve root 

displacement or compression can be thought of as a compound of the concepts “nerve root” 

and “displacement” or “compression,” with varying language appearing between them in 

actual radiology reports. While a rule-based model achieved a sensitivity of only 0.67, a 

machine-learned model achieved sensitivity of 0.95 (p<0.05). Similarly, the finding lateral 

recess stenosis, compound of the “lateral recess” and spinal “stenosis”, was identified with a 

sensitivity of 0.41 by the rule-based model versus a sensitivity of 0.94 by the machine-

learned model (p<0.05). Table 3 illustrates examples of reports missed by rule-based but 

identified by machine-learned models for these two findings. In these cases, the compound 

parts of the findings can be inferred from context.
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Effect of data availability and linguistic complexity on machine-learned models

Figure 7a displays the relationship between machine-learned model performance as 

measured by F1-score and data availability as measured by finding prevalence; Figure 7b 

shows model performance by linguistic complexity as measured by average Cohen’s kappa.

Model performance was typically higher when more data were available for learning. 

Among the 13 findings with prevalence less than 20%, F1-score of machine-learned models 

was observed to increase substantially with the increase in finding prevalence. Among the 13 

findings with prevalence greater than 20%, F1-score increased slightly with the increase in 

finding prevalence.

Model performance tended to be higher when the finding was less linguistically complex. 

Among the 17 findings with kappa greater than 0.85, F1-score of machine-learned models 

was observed to increase substantially with the increase in kappa (decrease in linguistic 

complexity). Among the 9 findings with kappa less than 0.85, the effect of linguistic 

complexity on model performance was less definitive; however, the variability in F1-score 

was high.

DISCUSSION

Many imaging findings related to LBP are not explicitly coded in medical databases that are 

part of the electronic health record. NLP allows for automated identification of such findings 

from free-text radiology reports, reducing the burden of manual extraction (26). In this 

study, we sought to develop and validate an NLP system to identify 26 findings related to 

LBP from radiology reports. Our initial goal was to build a system for 8 radiological 

findings common among subjects without LBP, and we subsequently expanded this goal to 

encompass additional relevant findings. Our reference-standard annotations were guided by 

how radiology reports are likely interpreted by receiving physicians, and our NLP system 

was developed accordingly (20). To ensure internal consistency, we conducted pre-

annotation training, double annotation of reports, and post-annotation checking of labels, 

resulting in a dataset with high inter-rater reliability for most findings.

In practice, NLP approaches can include rule-based and machine-learned (26; 32). Rule-

based approaches have minimal set-up costs, but are burdensome to scale beyond limited 

findings or over time as language usage changes. Machine-learned approaches leverage the 

same feature sets to predict multiple findings, however require large sample sizes for 

development. The flexibility of machine-learned models may be more preferable to the 

rigidity of rules-based models, when considering scalability to large EMR databases. 

Furthermore, complicated machine-learned NLP models may not be necessary for report-

level classification tasks: Zech et al. reported that simple features such as N-grams together 

with logistic regression was as accurate as more sophisticated features (35).

Our rule-based models achieved moderate sensitivity and very high specificity, comparable 

to the performances of rule-based models to identify findings for other conditions (36). Such 

performance has been often attributed to usage of open-source negation detection algorithms 

(24) to reduce false positives. Our machine-learned models provided substantial gains in 
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model sensitivity with slight loss in specificity, and had overall higher discrimination. Such 

gains are due to machine-learned models augmenting the predictions of rule-based models 

with additional contextual text-based predictors (Appendix B).

One concern in using NLP for biomedical applications is the generalizability to new study 

sites, since reporting style and structure could vary by institution and radiologist training 

(26). Our dataset was assembled across four health systems, and site was included as a 

predictor in the machine-learned models. Interestingly, no models had site in the list of top 5 

predictors, indicating that language used in expressing the imaging findings was relatively 

consistent across study sites. However, within-site linguistic variability is possible, since 

each site in our study encompassed multiple clinics, radiologists, and data systems. Due to 

small sample sizes for each site (Table 1), we caution against any conclusive evidence.

Another issue in using NLP in radiology is the potential linguistic heterogeneity across 

imaging modalities. Our study included both x-ray and MR reports, where MR reports were 

on average twice as long as x-ray reports (Table 1). Additionally, while findings involving 

soft tissues and internal structures cannot directly be seen on x-ray images, they may 

occasionally be inferred and dictated on x-ray reports, especially when providing 

recommendations for symptomatic patients (27). Therefore, we annotated for all 26 findings 

on reports from both modalities. Our machine-learned models were developed on reports 

from both modalities due to sample size constraints. We did, however, attempt to account for 

potential linguistic heterogeneity, by including modality as a predictor. Only two findings 

(any stenosis, foraminal stenosis) included modality in the list of top 5 predictors (Appendix 

Table B.1), suggesting that any linguistic heterogeneity across modalities were contained 

within report text, and that the additional information of modality did not improve 

prediction.

Our study included 26 findings of differing prevalence and linguistic complexity. We 

demonstrated that using the same development sample, performances of machine-learned 

models were poorer when a finding was less prevalent or linguistically more complex. These 

were instances when, due to the low number or quality of instances of a finding, there was 

insufficient information in the development data for machine-learned models to classify 

accurately (37). Our results suggest that even within the same NLP system, additional work 

required to fine-tune model performances could vary depending on characteristics of target 

findings.

A limitation of this study is that we required dichotomous annotations and predictions, even 

though radiology reports can contain ambiguous terms such as “suggesting” and “no 

definite” (Table 3) which may affect model performance (38). We attempted to reduce any 

potential bias by consistently coding such terms as indicating the presence of the finding. 

Another limitation is sample size. Even though our sample size was consistent with 

recommendations for classification tasks with moderate prevalence findings (14), the 

machine-learned models of rarer (prevalence <20%) findings had lower PPVs and were 

imprecise (Appendix Table A.2), comparable to the results seen in Yetisgen-Yildiz et al (37). 

Larger datasets could provide larger training samples, thus better accuracies for machine-

learned models, as well as larger testing samples, therefore validation performance measures 
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that are less variable. We plan to augment our dataset with additional annotations in future 

work, using alternative sampling designs that can facilitate resource-efficient annotations. 

Another limitation is that we only considered x-ray and MR reports in this study, and thus 

our results may not generalize to other imaging modalities.

We recognize that our regularized regression-based machine-learned models were relatively 

simple, and deep learning neural networks could achieve higher accuracy if given a 

sufficiently large development sample size. In addition, instead of using NLP to identify 

lumbar spine imaging findings, image processing of actual scans has been observed to be 

highly accurate on MR images (39). It would be interesting to compare image processing 

and NLP predictions to downstream clinical outcomes.

Ultimately, our experience demonstrated the feasibility of an NLP system built with open-

source tools to identify lumbar spine imaging findings from radiology reports sampled 

across two modalities and four health systems. We plan to use our NLP system to identify 

the 8 findings that are common among subjects without LBP, which our system 

demonstrated high accuracy for in the testing sample, after further validation on additional 

reports sampled from the cohort.

CONCLUSIONS

We developed and validated an NLP system to identify 26 findings related to LBP from x-

ray and MR radiology reports sampled from four health systems. Machine-learned models 

provided substantial increase in sensitivity with the slight loss of specificity compared to 

rule-based models. Model accuracies were affected by finding prevalence and finding 

complexity.
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Figure 1. 
Flowchart illustrating steps involved in development of the NLP system on N=871 medical 

expert annotated x-ray and MR reports, sampled from four health system sites. Note: A 

“feature” is an NLP terminology that is equivalent to the terminology “predictor” in 

statistical modeling; “extraction” refers to the process of creating predictors from free text. 

MR = Magnetic Resonance; NLP = Natural Language Processing.
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Figure 2. 
Examples of text-based predictors extracted from a radiology report snippet and used in 

machine-learned models. The phrase “No fracture” is used as a NegEx predictor (keyword 

negated) for the model to classify Fracture. The phrase “compresses the left S1 traversing 

nerve root” is used as a Regex predictor (keyword present) for the model to classify Nerve 

Root Displacement or Compression. The N-grams “central disc” and “lumbar” are used as 

predictors for all machine-learned models.
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Figure 3. 
Distribution of agreement patterns in the annotated dataset. The findings are ordered by 

decreasing prevalence in the test set. Note: * after a finding indicates the 8 findings 

commonly found in subjects without LBP; ** indicates the 6 findings that are less common 

but are potentially clinically important. LBP = Low Back Pain.
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Figure 4. 
Point estimates of sensitivity, specificity and AUC of rule-based and machine-learned 

models for each finding as measured in a test set of N=174. The findings are ordered by 

decreasing prevalence in the test set; black lines on each panel correspond to 0.90. Note: * 

after a finding indicates the 8 findings commonly found in subjects without LBP; ** 

indicates the 6 findings that are less common but are potentially clinically important. AUC = 

Area Under the Receiver Operating Characteristic (ROC) curve; LBP = Low Back Pain.
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Figure 5. 
ROC curves and AUC in the test set for rule-based and machine-learned models of the 8 

findings commonly found in subjects without LBP. AUC = Area Under the Receiver 

Operating Characteristic (ROC) curve; LBP = Low Back Pain; ML = machine-learned.
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Figure 6. 
(a) Sensitivity comparisons: Proportion of reports classified correctly by one model but not 

the other, as compared to true positive annotations in the test set. (b) Specificity 

comparisons: Proportion of reports classified correctly by one model but not the other, as 

compared to true negative annotations in the test set. The test set has N=174 reports; 

denominators in calculating proportions are test set size multiplied by prevalence (for 

sensitivity comparisons), or one minus prevalence (for specificity comparisons). Note: * 

after a finding indicates the 8 findings commonly found in subjects without LBP; ** 

indicates the 6 findings that are less common but are potentially clinically important. *** at 

the left of the stacked bar plots indicates p<0.05 from McNemar’s test, not adjusting for 

multiple comparisons. LBP = Low Back Pain.
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Figure 7. 
a. Performance of machine-learned models as measured by F1-score versus data availability 

as measured by finding prevalence; vertical dashed line is finding prevalence = 20%. b. 

Performance of machine-learned models as measured by F1-score versus linguistic 

complexity as measured by inter-rater kappa; vertical dashed line is kappa = 0.85. Note: 

Each dot represents a finding. The blue lines are non-parametric Local Regression fits to the 

data.
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Table 1

Reference-standard annotated dataset.

N in dataset Average document length (number of 
words)

Average age in years Men (%)

Kaiser Permanente of Washington

 x-ray 102 1073±212 70.4±13.9 40.2

 MR 115 2141±731 58.9±14.4 51.3

 Total 217 1639±767 64.3±15.2 46.1

Kaiser Permanente of Northern California

 x-ray 104 1054±235 67.5±16.8 39.4

 MR 114 1953±647 57.1±15.0 47.4

 Total 218 1524±668 62.1±16.9 43.6

Henry Ford Health System

 x-ray 103 1129±323 67.2±16.0 28.2

 MR 115 2130±986 59.2±16.0 49.6

 Total 218 1657±901 63.0±16.4 39.4

Mayo Clinic Health System

 x-ray 103 1094±280 69.4±16.2 38.8

 MR 115 1722±645 55.1±15.4 41.7

 Total 218 1425±595 61.9±17.3 40.4

All

 x-ray 413 1088±266 68.6±15.8 36.7

 MR 458 1987±782 57.6±15.2 47.5

 Total 871 1561±746 62.8±16.4 42.4

Note: Values after ± are standard deviations. MR = magnetic resonance imaging.
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Table 2

List of 26 findings identified by NLP system.

Type of finding Imaging Finding RadLexID

Deformities

Listhesis – Grade 1* RID4780ˆ

Listhesis – Grade 2 or higher RID4780ˆ

Scoliosis RID4756

Fracture
Fracture RID4658,4699,49608

Spondylosis RID5121

Anterior column degeneration

Annular Fissure* RID4716-7, RID4721-3

Disc Bulge* RID5089

Disc Degeneration* RID5086

Disc Desiccation* RID5087

Disc Extrusion RID5094-6

Disc Height Loss* RID5088

Disc Herniation RID5090

Disc Protrusion* RID5091-3

Endplate Edema, or Type 1 Modic RID5110

Osteophyte – anterior column RID5079

Posterior column degeneration
Any Stenosis RID5028-34

Facet Degeneration* NA

Associated with leg pain

Central Stenosis RID5029-32

Foraminal Stenosis RID5034

Nerve Root Contact NA

Nerve Root Displaced or Compressed NA

Lateral Recess Stenosis NA

Non-specific findings/other

Any Degeneration RID5085

Hemangioma RID3969

Spondylolysis RID5120

Any Osteophytes RID5076,RID5078-9,RID5081

Note:

*
after a finding indicates the 8 findings commonly found in subjects without LBP;

**
indicates the 6 findings that are less common but are potentially clinically important.

ˆ
indicates the RadLexID for spondylolisthesis. Any Stenosis refers to stenosis at any location (Central, Foraminal, or Lateral Recess) or not 

otherwise specified. Any Degeneration refers to any of Disc Degeneration, Facet Degeneration, or Degeneration not otherwise specified. LBP = 
Low Back Pain.
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Table 3

Text excerpts from reference-standard dataset.

Finding Text excerpts

Disc Herniation …degenerative change is evident at L2–L3 and… disc herniation is not excluded.

Essentially Unremarkable. L3–4: Minimal left posterior lateral focal herniation…

right laminotomy. No definite disc herniation. Mild nonmasslike enhancing tissue…

Endplate Edema/Type 1 Modic …S1 superior endplate with surrounding edema suggesting element of acuity…

…high signal intensity on T2 and low signal intensity on T1 suggestive of acute to subacute superior 
endplate deformity.

Minimal edema in the superior L5 endplate with more chronic appearance.

Lateral Recess Stenosis Narrowing of the spine canal and lateral recesses and the right neuroforamen…

…displaces the traversing left S1 nerve root in the left nerve root in the left lateral recess…

…eccentric to the left with a left foraminal and far lateral component compressing the exiting left…

Nerve Root Displaced or Compressed Severe facet arthrosis with a diffusely bulging annulus causes moderate to severe central stenosis with 
redundant nerve roots above and below the interspace level.

There is granulation tissue surrounding the descending right S1 nerve root…

…has minimal mass effect on the descending left S1 nerve root…

Examples of report text from the reference-standard dataset show ambiguity in report text for the two findings with lower inter-rater agreement: 
Disc Herniation (kappa=0.49) and Endplate Edema (kappa=0.72), and reports that were “missed” by rule-based but “found” by machine-learned 
models for Lateral Recess Stenosis and Nerve Root Displaced or Compressed. Note: An ellipsis (…) indicates omitted raw text. Words in italics 
refer to ambiguous language.
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