MAYO CLINIC

Basics of GRADE

UW CLEAR Center / PM&R Journal Methods Webinar 10/21/2019

M. Hassan Murad, MD, MPH Professor of Medicine Mayo Clinic

Outline

- What is GRADE and for whom?
- Historical background
- First part of GRADE, certainty
- Second part of GRADE, action

What is GRADE?

- A system to:
 - Determine how trustworthy is the evidence (certainty in evidence)
 - Move from evidence to recommendations (action)

Who is GRADE for?

- Knowledge of GRADE is critical for:
 - Guideline developers (obviously)
 - Systematic reviewers (obviously)
 - Editors, peer reviewers
 - Media reporters
 - Researchers
 - Patients

Historical background

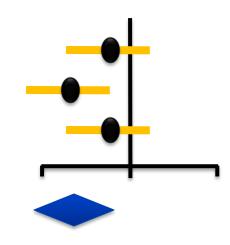
- Guidelines: statements of action telling us what to do with the aim of improving patient care and standardization
- 1970s Guidelines based on consensus of experts & cherry-picked evidence (if any)
- Late 80s-90s: evidence based medicine movement led to guidelines based on research, dependent on study design:
 - RCTs→ compelling recommendations
 - Non-RCTs → vague recommendations

Historical background

- 2000s GRADE was developed based on the observations:
 - Not all RCTs are good
 - Some non RCTs provide compelling evidence
 - Evidence alone is not enough for decisionmaking

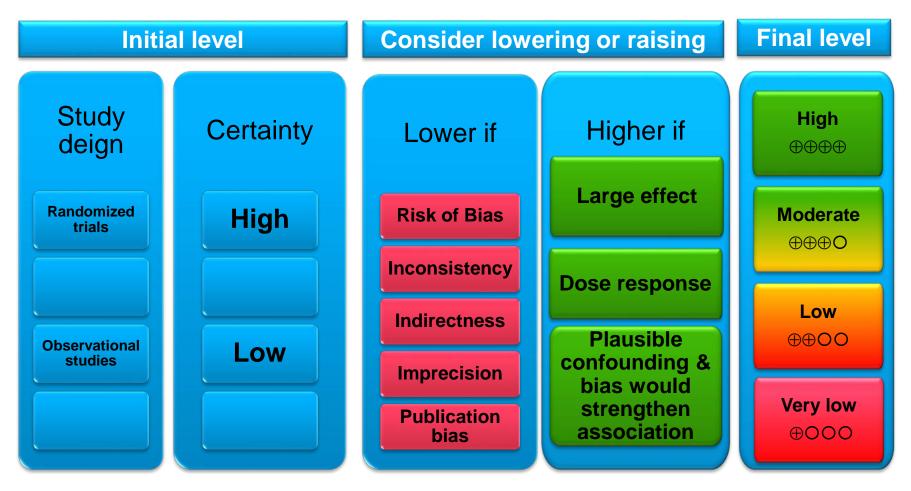
Historical background

- Currently GRADE has become the gold standard with >100 organizations/entities and >10,000 publications
- Guideline methodology research almost solely on GRADE
- A few organizations not using but borrowing GRADE principles



Reminder: hat is GRADE?

- A system to:
 - Determine how trustworthy is the evidence (certainty in evidence)
 - Move from evidence to recommendations (action)



• It is NOT quality of a study (risk of bias)

 Rather, certainty is about that the true effect is in a certain range of values (that may warrant an action)

Level of certainty (quality, confidence, strength)

1. Study limitations

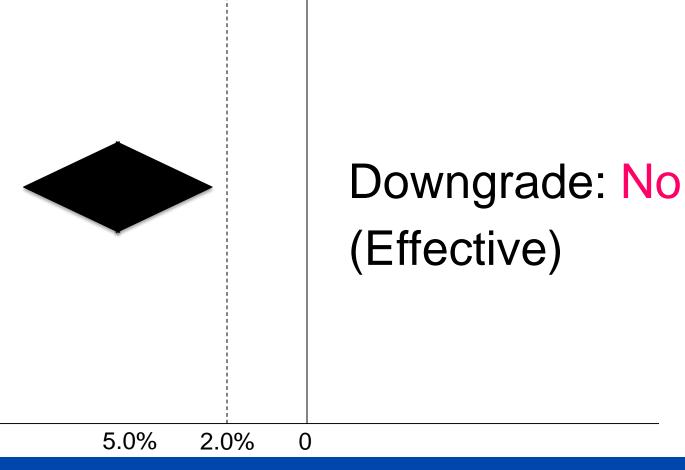
- Also called risk of bias
- Per study, per outcome
- Then, overall for all the studies
- Tools:
 - RCTs: Cochrane tool
 - Observational: Newcastle Ottawa, ROBINS
 - Diagnostic: QUADS2
 - etc...

2. Inconsistency/Heterogeneity

- Differences in results between individual trials
- Causes
 - Clinical differences (patients, interventions, outcomes)
 - Methods (risk of bias)
 - Chance
- Hypotheses to explain inconsistency are better made before seeing results (*a priori*)

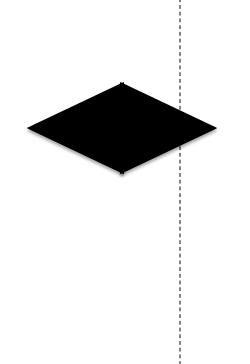
Inconsistency/Heterogeneity

- Common visual representation in forest plots
- Eye ball test
 - Variation in effect size
 - Overlap of confidence intervals
- Statistical tests for heterogeneity
 - Tau-squared
 - Chi-squared
 - I² (preferred)
 - % of Heterogeneity not attributable to chance
 - Heterogeneity between studies/between studies+ within studies



3. Imprecision

- Uncertainty about "true" effect size as reflected by:
 - Low event rate/small sample size
 - Wide confidence intervals
- Downgrade for imprecision when:
 - Decisions would differ if the truth was upper vs lower boundary


Imprecision

Absolute Risk Difference

Imprecision

Downgrade: Yes (Effective)

Absolute Risk Difference

©2014 MFMER | slide-16

4. Indirectness of Evidence

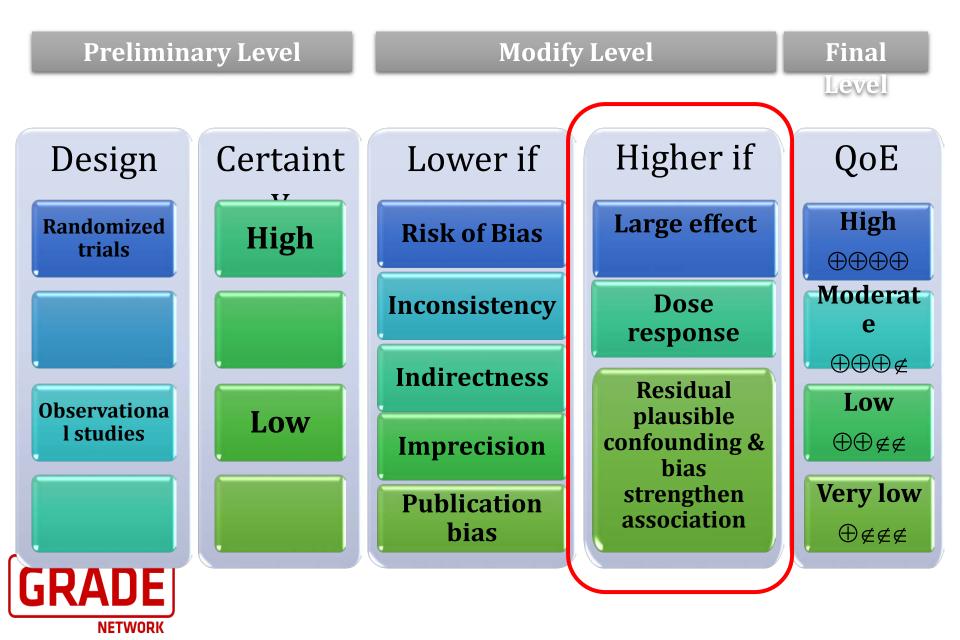
- Consider the PICO elements :
 - Population/patients (eg, old versus young)
 - Interventions (eg, intravenous vs oral drug administration)
 - Outcomes
 - Patient important vs surrogates
 - Long follow up vs short follow up)

PICO Patients Interventions Comparisons outcomes

PICO Patients Interventions Comparisons outcomes

5. Publication Bias

- Faster publication of "positive" trials
- Slower or no publication of "negative" trials
- SR needs to search "grey literature" for unpublished studies



How common?

- 20-30% of RCTs submitted to FDA are never published. In one case (RCTs of reboxetine), 75% of data were unpublished
- Not at random: published data overestimate benefit & underestimate harm
- How to detect it:
 - Non-statistically (registries, protocols, FDA records)
 - Statistically (important limitations such having enough studies and some homogeneity)

Level of certainty

Scenario 1:

- Total hip replacement for people with disabling hip arthritis
- No RCT compared THR to no THR
- How certain are we that THR helps in reducing OA pain and disability?
- Many other examples from observational studies

Scenario #1 Consider rating up for a large effect

- Modeling and empirical evidence suggests that confounding (from nonrandom allocation) alone:
 - unlikely to explain associations with RR >2 (< 0.5)
 - very unlikely to explain associations with RR>5 (<0.2)
- Confidence in the estimates is then rated up once or twice
- Particularly when considering rapidity and trajectory

Scenario 2: Dose-effect gradient

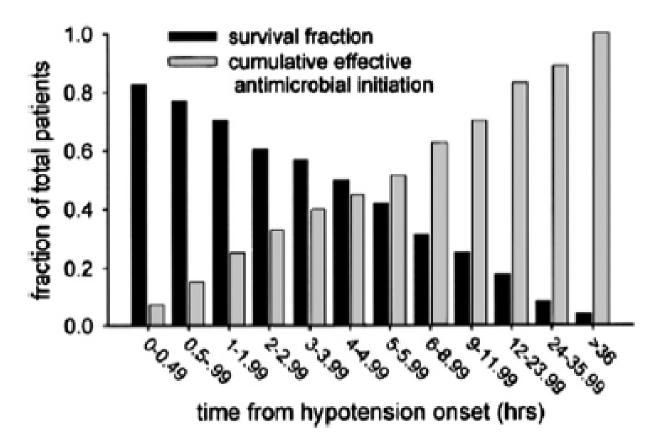
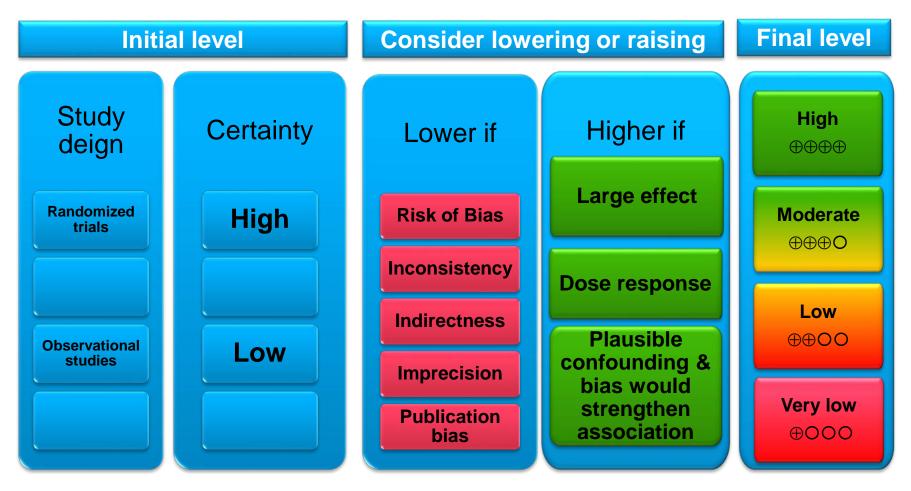


Fig. 1. Cumulative effective antimicrobial initiation following onset of septic shock-associated hypotension and associated survival. The *x*-axis represents time (h) following first documentation of septic shock-associated hypotension. *Black bars* represent the fraction of patients surviving to hospital discharge for effective therapy initiated within the given time interval. The *gray bars* represent the cumulative fraction of patients having received effective antimicrobials at any given time point.

Scenario 3:

- Well-done observational studies showed no association between autism and vaccinations
- However, these studies suffer from recall bias (parents of children with autism more likely to remember the proximity of vaccination to onset of autism)
- How does this recall bias affect our certainty about lack of association?


Scenario #3

Consider rating up when residual confounding or bias strengthens the association

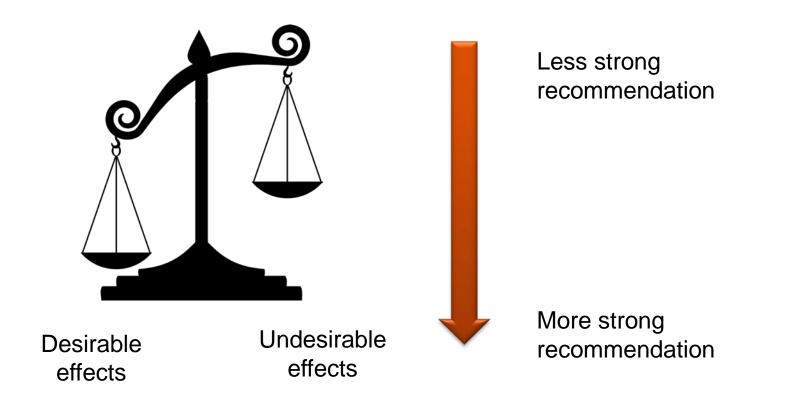
- Well-done observational studies attempt to adjust analysis for known prognostic confounders
- Most of the time however, we cannot control for everything and residual confounding remains
- If this residual confounding is in the direction that strengthen the association, we may have higher confidence of the association
- "despite"

Level of certainty (quality, confidence, strength)

Other than the certainty of evidence, what factors should we consider?

- 2. Balance of benefits and harms
- 3. Patients' values
- 4. Costs and resources
- 5. Acceptability
- 6. Feasibility
- 7. Impact on equity

2. Balance of benefits and harms


- Babies born <32 weeks
- Lots of oxygen vs a little oxygen
- Quality of evidence: Amazing! The best you have ever seen
- Results: lots of oxygen → lower mortality and higher risk of blindness
- Should the recommendation for oxygen amount be strong? Remember the evidence is amazing.

Should heparin be given to patients in ICU?

Outcome	effect
DVT/PE	6 fewer per 1,000 (2 fewer -10 fewer)
Major bleeding	3 more per 1,000 (1 more-5 more)
mortality	1 more per 1,000 (2 fewer to 4 more)

In your head:
$$B_1 + B_2 - H_1 - H_2 = Net$$
 benefit

$$B_1 \times V_1 + B_2 \times V_2 - H_1 \times V_1 - H_2 \times V_2 = Net benefit$$

3. Values

- Studies have shown that PCN reduces mortality from pneumococcal pneumonia by 20% (⊕⊕⊕O)
- Any reasons to not offer PCN to a patient you have just admitted with this condition?
 - 29 year old mother of 2, legal secretary wo became ill with cough and fever last night
 - 91 year old nursing home resident who has been in vegetative state for 2 years, no visitors for the last 8 months

What are values and preferences?

- Utilities and disutilities associated with a particular health state
- "a broad term that includes patient perspectives, beliefs, expectations, and goals for health and life, ..."

©2010 ^{©2014 MFMER}M₽[#]M₽

4. Costs and resources

- Example:
 - Aspirin for secondary prevention of heart disease
 - Hepatitis C (sofosbuvir, simeprevir, \$1,000/pill)

Other considerations (not always relevant)

5. Acceptability: circumcision in Africa to reduce HIV transmission

6. Feasibility: Proton beam radiotherapy in rural Oklahoma

6. Impact on equity: transplant vs chronic transfusion therapy to prevent stroke in children with sickle cell disease

thebmj | BMJ 2016;353:i2016 | doi: 10.1136/bmj.i2016

GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction

Pablo Alonso-Coello,^{1,2} Holger J Schünemann,^{2,3} Jenny Moberg,⁴ Romina Brignardello-Petersen,^{2,5} Elie A Akl,^{2,6} Marina Davoli,⁷ Shaun Treweek,⁸ Reem A Mustafa,^{2,9} Gabriel Rada,^{10,11,12} Sarah Rosenbaum,⁴ Angela Morelli,⁴ Gordon H Guyatt,^{2,3} Andrew D Oxman⁴ the GRADE Working Group

CrossMark

GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines

Pablo Alonso-Coello,^{1,2} Andrew D Oxman,³ Jenny Moberg,³ Romina Brignardello-Petersen,^{2,4} Elie A Akl,^{2,5} Marina Davoli,⁶ Shaun Treweek,⁷ Reem A Mustafa,^{2,8} Per O Vandvik,³ Joerg Meerpohl,⁹ Gordon H Guyatt,^{2,10} Holger J Schünemann,^{2,10} the GRADE Working Group

Implications of a *strong* recommendation

- Population: Most people in this situation would want the recommended course of action and only a small proportion would not
- Health care workers: Most people should receive the recommended course of action
- Policy makers: The recommendation can be adapted as a policy in most situations

Implications of a *conditional* recommendation

- Population: The majority of people in this situation would want the recommended course of action, but many would not
- Health care workers: Be prepared to help people to make a decision that is consistent with their own values/decision aids and shared decision making
- Policy makers: There is a need for substantial debate and involvement of stakeholders

Summary

- GRADE is a framework for decisionmaking
- The two parts of GRADE:
 - Judging certainty in research evidence
 - Moving from evidence to action

